Malarial transmission is influenced by several mitigating factors. Students are encouraged to explore these factors in a post-laboratory extension.
Explore malaria with the Malaria Atlas Project
Malaria, the disease caused by parasites of the genus Plasmodium, is a global health concern. Half of the human population is at risk of contracting malaria, yet the parasite is confined to a narrow climatic range. Temperatures must be high enough and rainfall must be frequent enough for the parasite’s vector to maintain activity, feed and reproduce. The Malaria Atlas Project provides access to maps, data and literature, which can be used to explore the geographic distribution of Plasmodium and its arthropod vectors, the prevalence of malarial infection globally and regionally, and the occurrence of blood disorders related to malaria. Information available through the Malaria Atlas Project can be implemented in a variety of classroom exercises including the exploration of climate and the implications for climate change in the context of malaria and human health.
This post-laboratory extension is intended to provide an open, flexible framework that is not necessarily a continuation of our Parasite Predicament activity but can be tailored to introduce biological concepts illustrate the connection between disciplines.
Blood disorders and malaria
A number of blood disorders are known to affect the malaria parasite (Plasmodium sp.) at its human-blood-borne life stage, resulting in decreased fitness of the parasite and thereby reducing its effect on its human host. Sickle cell anemia, which provides carriers a high tolerance to malaria infection, is the best documented of these disorders and brings a plethora literature and multimedia material suitable for introducing new concepts to students. For example, students could explore the mechanisms by which evolution works—occurrence of the sickle cell allele is closely tied to the presence of malaria in the environment. Moreover, sickle cell is not a perfect solution to malaria and has resulted in evolutionary tradeoffs, which manifest in a suite of health concerns unrelated to malaria and reduce the fitness of sickle cell carriers outside of malaria habitat. This video discusses the research that led to the discovery of the link between sickle cell and malaria. The Malaria Atlas Project offers access to datasets that can be used to explore the connection between malaria and sickle cell in a statistical framework. Classroom exercises can be tailored to be as simple as graphing malaria vs. sickle cell occurrence in a set of countries or as complicated as calculating significance (T or p values) to look at the relationship between blood disorders and malaria.
This option provides a natural transition from our Parasite Predicament activity to our Mystery of the Crooked Cell activity, introduces students to the interconnected nature of malaria and sickle cell, and provides a connection between biology, data management and mathematics.
Malaria prevention and public health
Malaria has been and continues to be among humanity’s most pressing health concerns; it sickens hundreds of millions and kills hundreds of thousands of people each year. Developing countries, which lack regular access to quality healthcare, are hit hardest by malaria. Using malaria as a case study in public health offers students an opportunity to study the Plasmodiumlifecycle (how it infects humans and how it causes illness), historical and contemporary preventative measures (e.g., mosquito nets, anti malarial meds…), efforts to develop new methods of prevention, detection and treatment, and to explore the ways in which societies in developing and developed countries deal with a persistent public health concern. Here, UNICEF’s introduction to malaria can act as a guide. Teachers may elect to have students create a media campaign (poster, website, video…) to build awareness of malaria and its impact. Alternatively, maps and/or data available on the Malaria Atlas website can be used to examine the global prevalence of malaria in a socioeconomic context (i.e., developed vs. developing countries).
This option provides the opportunity to expand on the laboratory-based concepts of malaria/antigen detection introduced in the Parasite Predicament activity and considers broader human-health implications.
Global climate change and the link to malaria
- Global temperatures are expected to rise.
- If global temperatures rise and if accompanied by adequate rainfall, then the risk of malaria may increase.
- Warmer temperatures reduces the time to maturity in the parasites life cycle, increasing the likelihood that a mosquito will transmit a mature malarial parasite before the mosquito dies.
- Climatic conditions are expected to become more conducive to malarial transmission in east Africa, central Asia, China, Europe and the Eastern US.
- There are varying opinions on the severity of the spread-The fringes of malaria-affected areas are likely to see in an increase in malaria, but overall since 1900, cases of malaria have decreased due to public health efforts (economic development, medication, insecticides, mosquito nets, etc).
The effects of global climate change are apparent today; one of the potential effects may be the spread of malaria due to warming global temperatures. Malaria is a disease caused by a protozoan parasite (Plasmodium falciparum) that is transmitted by the bite of a female mosquito (Anopheles sp.) passing the parasite from the mosquitos’ saliva into a persons’ bloodstream and then travels to the liver. Infected people start showing symptoms between eight to twenty five day. Symptoms are often flu-like and can include headache, fever, shivering, joint pain, hemoglobin in urine and convulsions. Patients often display a cyclical symptom called paroxysm, where there is a feeling of coldness, then shivering, fever and sweating, repeating every two or three days. Further complications can occur including trouble breathing, kidney failure and death.
Currently, malaria is common in tropical and subtropical regions around the world, due to suitable mosquito habitat in these equatorial regions. It is suggested that as climates continue to change and global temperatures rise, that suitable habitat for malaria carrying mosquitos will expand. Optimal temperatures for Anopheles mosquitos ranges between 20–30°C, with sufficient rainfall and humidity. Climate change may alter the behavior and geographic range of the mosquitos, as well as the life cycle of the parasite. Warmer temperatures can equate to a more rapidly digested blood meal, more frequent blood meals and accelerated development of the parasite. Mosquitos are most likely to spread to the outward fringes of their range and to higher elevations as temperatures become more hospitable. It has been suggested there will be an increase of malaria outbreaks in the East African highlands, when comparing climate data from 1950-2002 concurrent with an increase in the frequency of malaria cases. This study also postulated that a half degree centigrade increase in average global temperature trend will result in a 30–100% increase in mosquito abundance.
Climate change will not equate to unbounded expansion of mosquitos into new habitats, localized weather patterns will result in wetter and drier regions. Mosqutios require sufficient rainfall and standing water for the aquatic stage of the life cycle. With average global temperatures expected to increase from 1.4-5.8°C by the end of the 21st century, broad scale impacts of climate change will have devastating effects on the planet and the human race. The current exponential growth of the human population along with poor access to healthcare in malaria stricken regions when accompanied by land use changes (i.e., deforestation) are likely only to favor mosquito breeding and increase the spread of malaria to a larger human population. The spread of malaria due to global warming is arguably one of the most pressing climate change related health issues facing the world in the very near future.
References
Gething, P.W., D.L. Smith, A.P. Patil, A.J. Tatem, R.W. Snow, and S.I. Hay. 2010. Climate change and the global malaria recession. Letters to Nature 465:342-345.
Hay, S.I., D.J. Rogers, S.E. Randolf, D.I. Stern, J. Cox, G.D. Shanks, and R.W. Snow. 2002. Hot topic or hot air? Climate change and malaria resurgence in East African highlands. Trends in Parasitology. 18:530-534.
Hay, S.I., J. Cox, D.J. Rogers, S.E. Randolf, D.I. Stern, G.D. Shanks, M.F. Myers, and R. W. Snow. 2002. Climate change and the resurgence of malaria in East African Highlands. Letters to Nature. 415:905-909.
Marten, W.J.M., T.H. Jetten, J. Rotmans, and L.W. Niessen. 1995. Climate change and vector-borne diseases. Global Environmental Change. 5:195-209.
Martens, W.J.M., L.W. Niessen, J. Rotmans, T.H. Jetten, and A.J. McMichael. 1995. Potential impact of global climate change on malaria risk. Environmental Health Perspectives. 103:458-464.
Pascual, M. J.A. Ahumada, L.F. Chaves, X. Rodó, and M. Bouma. 2006. Malaria resurgence in the East African Highlands: Temperature trends revisited. PNAS. 103:5829-5834.
Patz, J.A. and S.H. Olson. 2006. Malaria risk and temperature: Influences from global climate change and local land use practices. PNAS. 103:5635-5636.
Patz, J.A., D. Campbell-Lendrum, T. Holloway, and J.A. Foley. 2005. Impact of regional climate change on human health. Nature. 438:310-317.
Tanser, F.C., B. Sharp, and D. le Sueur. 2003. Potential effects of climate change on malaria transmission in Africa. The Lancet. 362:1792-1798.
van Lieshout, M., R.S. Kovats, M.T.J. Livermore, and P. Martens. 2004. Climate change and malaria: analysis of the SRES climate and socio-economic scenarios. Global Environmental Change. 14:87-99.